
COMPUTATIONALLY	 LIGHT	
“MULTI-SPEED”	ATOMIC	MEMORY
ANTONIO	 FERNÁNDEZ ANTA,	 IMDEA	NETWORKS

THEOPHANIS HADJISTASI , 	 UCONN

NICOLAS 	NICOLAOU,	 IMDEA	NETWORKS

Madrid,	Spain	- December 2016

On	Principles	Of	DIstributed Systems	- OPODIS

Problem
Goal: Emulate atomic read/write shared objects in an asynchronous, messaging-
passing, crash-prone system

Approach: Objects are replicated to cope with crashes

Challenge: Providing consistency when read and write operations concurrently
access different replicas

q Atomicity [L79] (or linearizability [HW90]) is the most intuitive semantic, providing
the illusion of a single-copy object.

Challenge: Making read and write operations efficient
qIn particular, in terms of communication and computation demands

2

System	Model

3

• Clients:	1	writer	&	R	readers	(SWMR)	
• Servers:	S	replica	hostsComponents

• write(v):	updates	the	object	value	to	v
• read():	retrieves	the	object	value
• Well-Formedness (only	a	single	operation	at	a	time)

Operations

• Asynchronous
• Message-Passing
• Reliable	Channels	(messages	are	not	lost	or	altered)

Communication

• Crashes
• Any	reader	or	the	writer
• Up	to	f servers	may	fail	where,	f	<	|S|/2

Failures

Efficiency	Metrics

§Computation	 time:	computation	steps in	each	
operation

§Communication	 delay:	number	of	communication
exchanges
§Communication	Exchange:	a	set	of	sends	and	matching	
receives	for	a	specific	message	type	within	the	protocol.

4

One	ABD-style	round	is	thus	equivalent	to	2	exchanges

Operation	
Latency = Computation + Communication

Algorithm	ABD:	Recalling	the	past	
[Attiya,	Bar-Noy,	Dolev 1996]	(Dijkstra Prize	2011)

Order	Operations	by	using	<ts,	v> pairs.

Writer	Protocol
• ts++ //increment ts
• Send <ts,v> to all
• Wait for a majority to

reply

Server	Protocol (Upon rcv a
msg m from i)
• if m.ts > ts

• Update local <ts,v>
• Send local <ts,v> to i

Reader	Protocol	 (2	phases)
• Phase 1:

• Send read to all
• Collect <ts,v> from a

majority
• Discover max(<ts,v>)

• Phase 2:
• Send max(<ts,v>) to all
• Collect ack from a

majority and return v

Reads must Write!
(2 round-trips)

Algorithm	Fast
[Dutta	et	al.	2004]

All	operations	
complete	in	one	

round	
(2	exchanges)

Computationally	
hard	predicate R	<	(S/f)	-2

Algorithm	ccFast
[Fernandez	Anta,	
Nicolaou,	Popa

2015]

All	operations	
complete	in	one	

round	
(2	exchanges)

New	predicate	
computationally	

light
R	<	(S/f)	-2

Algorithm	ohSAM
[Hadjistasi,	Nicolaou,	
and	Schwartzmann

2016]

All	operations	
complete	in	1	½	

rounds	
(3	exchanges)

No	predicate	
(computationally	

light)
Unbounded

The	world	of	“fastness”

Algorithm	ccFast:	Predicate

7

9↵ 2 [1, R+ 1] s.t. (1)

MS = {s : s.ts = maxTS ^ s.views � ↵} and |MS| � S � ↵f (2)

Reader	Protocol	 (1	phase)
• Send read to all
• Collect <ts,v> and views

from S-f servers
• Discover maxTS = max(ts)
• If predicate is true:

• return maxTS
• else

• return maxTS-1

Server	Protocol (Upon rcv a
msg m from i)
• if m.ts > ts

• Update local info
• Set seen = {i}

• else
• Add i in seen set

• Send local ts and the size
of the seen set to i

Writer	Protocol	 (2	exch)	
(Same as ABD)

How many and not
which observed <ts,v>

Contributions

ØProvide	2	new	“multi-speed”	 algorithms:
◦ ccHybrid
◦ When	seen	set	at	the	reader is	below	a	threshold	use	ccFast predicate
◦ Otherwise	perform	two	round	(ABD-like)	operation

◦ ohFast:	
◦ If	the	seen	at	the	server is	below	the	threshold	the	server	replies	directly	to	the	
reader	and	the	reader	uses	the	ccFast predicate

◦ Otherwise	it	relays	the	read	before	replying

ØComplement the algorithms with experimental results.

8

Question:Can	we	be	fast	when	conditions	allow	it,	and	switch	to	a	slower	
mode	when	conditions	may	violate	atomicity?

Algorithm	ccHybrid

9

Reader	Protocol	 (2-4	exch)
• Send read to all
• Collect <ts,v>, prop, and

views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)
• prSet = {s:s.prop=1}

• If maxVs > S/f – 2:
• If |prSet| < f+1:

• Propagate maxTS to
S-f servers

• return maxTS
• else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

Server	Protocol (Upon rcv a
msg m from i)
• if m.ts > ts

• Update local info
• Set seen = {i}
• Prop = false

• else
• Add i in seen set

• If m.ts = ts and i reader
• prop = true

• Send local ts and the size
of the seen set to i

Writer	Protocol	 (1	phase)	
(Same as ABD)

10

Set of Servers {A,B,C }

A B C

Reader

ccHybrid:	Visually
Reader	Protocol	 (2-4	exch)
• Send read to all
• Collect <ts,v>, prop, and

views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)
• prSet = {s:s.prop=1}

• If maxVs > S/f – 2:
• If |prSet| < f+1:

• Propagate maxTS to
S-f servers

• return maxTS
• else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

11

A B C

Reader

ccHybrid:	Visually
Reader	Protocol	 (2-4	exch)
• Send read to all
• Collect <ts,v>, prop, and

views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)
• prSet = {s:s.prop=1}

• If maxVs > S/f – 2:
• If |prSet| < f+1:

• Propagate maxTS to
S-f servers

• return maxTS
• else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

Communication Exchange 1

Invoker sends a Read Request to all servers

12

A B C

Reader

ccHybrid:	Visually

Servers receive the Read Requests and Update their local Information

Server	Protocol (Upon rcv a
msg m from i)
• if m.ts > ts

• Update local info
• Set seen = {i}
• Prop = false

• else
• Add i in seen set

• If m.ts = ts and i reader
• prop = true

• Send local ts and the size
of the seen set to i

13

Reader

ccHybrid:	Visually

Servers Reply back to the Invoker

Server	Protocol (Upon rcv a
msg m from i)
• if m.ts > ts

• Update local info
• Set seen = {i}
• Prop = false

• else
• Add i in seen set

• If m.ts = ts and i reader
• prop = true

• Send local ts and the size
of the seen set to i

14

Reader collects replies and discovers maxTs,
maxVS, and propagate set

Reader

ccHybrid:	Visually
Reader	Protocol	 (2-4	exch)
• Send read to all
• Collect <ts,v>, prop, and

views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)
• prSet = {s:s.prop=1}

• If maxVs > S/f – 2:
• If |prSet| < f+1:

• Propagate maxTS to
S-f servers

• return maxTS
• else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

Communication Exchange 2

15

Reader checks threshold on maxVS

A B C

Reader

ccHybrid:	Visually
Reader	Protocol	 (2-4	exch)
• Send read to all
• Collect <ts,v>, prop, and

views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)
• prSet = {s:s.prop=1}

• If maxVs > S/f – 2:
• If |prSet| < f+1:

• Propagate maxTS to
S-f servers

• return maxTS
• else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

16

check	if	propagated	 to	“enough”	 servers

A B C

Reader

ccHybrid:	Visually
Reader	Protocol	 (2-4	exch)
• Send read to all
• Collect <ts,v>, prop, and

views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)
• prSet = {s:s.prop=1}

• If maxVs > S/f – 2:
• If |prSet| < f+1:

• Propagate maxTS to
S-f servers

• return maxTS
• else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

If	Seen	set	is	above	Threshold

17

If “few” servers in propagation set

Reader

ccHybrid:	Visually
Reader	Protocol	 (2-4	exch)
• Send read to all
• Collect <ts,v>, prop, and

views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)
• prSet = {s:s.prop=1}

• If maxVs > S/f – 2:
• If |prSet| < f+1:

• Propagate maxTS to
S-f servers

• return maxTS
• else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

Communication Exchange 3,4

then propagate the maxTS

18

After propagation return maxTS

Reader

ccHybrid:	Visually
Reader	Protocol	 (2-4	exch)
• Send read to all
• Collect <ts,v>, prop, and

views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)
• prSet = {s:s.prop=1}

• If maxVs > S/f – 2:
• If |prSet| < f+1:

• Propagate maxTS to
S-f servers

• return maxTS
• else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

Communication Exchange 4

19

If seen set was bellow threshold

A B C

Reader

ccHybrid:	Visually
Reader	Protocol	 (2-4	exch)
• Send read to all
• Collect <ts,v>, prop, and

views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)
• prSet = {s:s.prop=1}

• If maxVs > S/f – 2:
• If |prSet| < f+1:

• Propagate maxTS to
S-f servers

• return maxTS
• else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

-> read op will be fast
-> check the predicate on what to return

Communication Exchange 2

8

A B C

THEOREM:	Algorithm	ccHYBRID implements	
an	atomic	SWMR	read/write	register.

Read Latency: 2 or 4 communication exchanges
(1 or 2 rounds)

Read Message Complexity: 4|S|

Algorithm:	ccHybrid

Algorithm	OHFAST

21

Reader	Protocol	 (2-3	exch)
• Send read to all
• Collect <ts,v>, secured,

and views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)

• If ∃ m s.t. (m.ts=maxTS)
and (m.secured=true):

• return maxTs
• Else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

Writer	Protocol	 (2	exch)	
(Same as ABD)

Server	Protocol (Upon rcv a READ
msg m from i)
• if m.ts > ts

• Update local info
• Set seen = {i}
• securedts = false

• Else
• add i in seen set

• If (i reader) and (|seen| > S/f
– 2) and securedts=false and
Relays[i]<ts

• Update local information
• Send relay to all servers

• Else
• Send local ts and size of

seen set and securedts to i

Algorithm	OHFAST

22

Server	Protocol (Upon rcv a RELAY msg m from s)
• if m.ts > ts

• Update local info
• Set seen = {i}
• securedts = false

• Else
• add i in seen set

• If Relays[i]=m.ts
• Add s in srvRelay set

• If |srvRelay| > S-f
• If (ts = m.ts) then set (securedts = true)
• Send Ack message to the invoker i

• Else
• Reply back to the relay sender

23

Set of Servers {A,B,C }

A B C

Reader

OHFAST:	Visually
Reader	Protocol	 (2-3	exch)
• Send read to all
• Collect <ts,v>, secured,

and views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)

• If ∃ m s.t. (m.ts=maxTS)
and (m.secured=true):

• return maxTs
• Else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

24

A B C

Reader

OHFAST:	Visually Communication Exchange 1

Invoker sends a Read Request to all servers

Reader	Protocol	 (2-3	exch)
• Send read to all
• Collect <ts,v>, secured,

and views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)

• If ∃ m s.t. (m.ts=maxTS)
and (m.secured=true):

• return maxTs
• Else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

25

A B C

Reader

Servers receive the Read Requests

OHFAST:	Visually
Server	Protocol (Upon rcv a
READ/WRITE msg m from i)
• if m.ts > ts

• Update local info
• Set seen = {i}
• securedts = false

• Else
• add i in seen set

• If (i reader) and (|seen| > S/f
- 2) and securedts=false and
Relays[i]<ts

• Update local information
• Send relay to all servers

• Else
• Send local ts and size of

seen set and securedts to i

Update their local info

26

A B C

Reader

Decide if will relay or not

OHFAST:	Visually
Server	Protocol (Upon rcv a
READ/WRITE msg m from i)
• if m.ts > ts

• Update local info
• Set seen = {i}
• securedts = false

• Else
• add i in seen set

• If (i reader) and (|seen| > S/f
- 2) and securedts=false and
Relays[i]<ts

• Update local information
• Send relay to all servers

• Else
• Send local ts and size of

seen set and securedts to i

27

Reader

OHFAST:	Visually
Server	Protocol (Upon rcv a
READ/WRITE msg m from i)
• if m.ts > ts

• Update local info
• Set seen = {i}
• securedts = false

• Else
• add i in seen set

• If (i reader) and (|seen| > S/f
- 2) and securedts=false and
Relays[i]<ts

• Update local information
• Send relay to all servers

• Else
• Send local ts and size of

seen set and securedts to i

Communication Exchange 2

If decision was to replay

28

A B C

Reader

Update their local information

OHFAST:	Visually
Server	Protocol (Upon rcv a
RELAY msg m from s)
• if m.ts > ts

• Update local info
• Set seen = {i}
• securedts = false

• Else
• add i in seen set

• If Relays[i]=m.ts
• Add s in srvRelay set

• If |srvRelay| > S-f
• If (ts = m.ts) then

set (securedts = true)
• Send Ack message to i

• Else
• Reply back to sender s

If decision was to replay

29

Reader

Decide if they will send message to the reader

OHFAST:	Visually
Server	Protocol (Upon rcv a
RELAY msg m from s)
• if m.ts > ts

• Update local info
• Set seen = {i}
• securedts = false

• Else
• add i in seen set

• If Relays[i]=m.ts
• Add s in srvRelay set

• If |srvRelay| > S-f
• If (ts = m.ts) then

set (securedts = true)
• Send Ack message to i

• Else
• Reply back to sender s

Communication Exchange 3

30

Reader

OHFAST:	Visually
Server	Protocol (Upon rcv a
RELAY msg m from s)
• if m.ts > ts

• Update local info
• Set seen = {i}
• securedts = false

• Else
• add i in seen set

• If Relays[i]=m.ts
• Add s in srvRelay set

• If |srvRelay| > S-f
• If (ts = m.ts) then

set (securedts = true)
• Send Ack message to i

• Else
• Reply back to sender sDecide if they will send message to the reader

Or reply back to the server

Communication Exchange 3

31

Reader

OHFAST:	Visually
Reader	Protocol	 (2-3	exch)
• Send read to all
• Collect <ts,v>, secured,

and views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)

• If ∃ m s.t. (m.ts=maxTS)
and (m.secured=true):

• return maxTs
• Else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

Reader Collects messages from the servers from
either communication exchange 2 or 3.

32

Reader

OHFAST:	Visually
Reader	Protocol	 (2-3	exch)
• Send read to all
• Collect <ts,v>, secured,

and views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)

• If ∃ m s.t. (m.ts=maxTS)
and (m.secured=true):

• return maxTs
• Else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

Discover Maximum Timestamp and the maximum views

A B C

33

Reader

OHFAST:	Visually
Reader	Protocol	 (2-3	exch)
• Send read to all
• Collect <ts,v>, secured,

and views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)

• If ∃ m s.t. (m.ts=maxTS)
and (m.secured=true):

• return maxTs
• Else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

Check if it is “safe” to return the maximum timestamp

A B C

34

Reader

OHFAST:	Visually
Reader	Protocol	 (2-3	exch)
• Send read to all
• Collect <ts,v>, secured,

and views from S-f servers
• Discover

• maxTS = max(ts)
• maxVS = max(views)

• If ∃ m s.t. (m.ts=maxTS)
and (m.secured=true):

• return maxTs
• Else:

• If predicate is true:
• return maxTS

• else
• return maxTS-1

Check if it is “safe” to return the maximum timestamp
Else run the predicate to decide which value to return.

A B C

OHFAST READ	PROTOCOL

9

A B C

THEOREM:	Algorithm	OHFAST implements	
an	atomic	SWMR	read/write	register.

Read Latency: 2 or 3 communication exchanges
(1 or 1 ½ rounds)

Read Message Complexity: |S2|

Overall	Algorithm	Comparison

Computation Communication Participation	
Bounds

ABD	[ABD96] Light Heavy (4	exch) Unbounded

FAST	[2004] Heavy (NP-hard) Light R	<	S/f	- 2

ccFAST [FNP15] Light Light R	<	S/f	- 2

OhSAM [HNS16] Light Moderate (3	exch) Unbounded

ccHYBRID (here) Light Light/Heavy Unbounded

ohFAST (here) Light Light/Moderate Unbounded

36

Simulations
We implemented algorithms ABD [Attiya, Bar Noy, Dolev 1996], OHSAM [Hadjistasi,

Nicolaou, Schwartzmann 2016], SF [Georgiou, Nicolaou, Shvartsman 2006], CCHYBRID and
OHFAST using the NS3 discrete event simulator.

Experimentation Platform:

§Single Writer w, Set of Readers R, Set of Servers S.

§f=1 servers may fail. Introduces high concurrency and inconsistency in
the system.

§Communication between nodes is established via point-to-point
bidirectional links implemented with DropTail queue.

§Two topologies are developed, Sparse and Condensed.

10

Topologies
Topologies mainly differ on the deployment of the server nodes.

11

Scenarios
Performance of the algorithms is measured in terms of
§ communication burden: the ratio of the number of fast over slow operations
§ operation latency: the total time it takes for an operation to complete

Scenarios:

§Test scalability of the algorithms as the number of the participants
increases, R ∈ [10,20,40,80,100],S ∈ [10,15,20,25,30].

§Test contention we specify the frequency of read operations and we
run the algorithms for different read intervals rInt∈ [2.3,4.6,6.9]

§We define two invocation schemes,
§ fix – operations invoked at the read interval rInt.
§ stochastic – operations invoked at random interval between [1…rInt].

12

Empirical	Results

Scalability: the increasing number of readers and servers has a negative
impact on all the algorithms.

13

Empirical	Results

Scalability: the increasing number of readers and servers has a negative
impact on all the algorithms.

§ The impact is higher on the “single-speed”algorithmsABD andOHSAM.

13

Empirical	Results

Operation Frequency: “multi-speed” algorithms are affected.

14

Empirical	Results

Operation Frequency: “multi-speed” algorithms are affected.

§They perform at least one slow operation per write.

§rInt=4.6 is closer to wInt=4.0 -> more concurrent reads to the write -> thus more slow reads.

14

Empirical	Results

Concurrency Scheme: “single-speed” algorithms ABD and OHSAM are used as points of
reference as they have same computation and communication in both schemes.

15

Empirical	Results

Concurrency Scheme:
§Fix scheme introduces congestion in the network.
§Stochastic scheme -> distributes the invocation time intervals
-> reducing the network congestion -> reducing operation latency.

15

Empirical	Results

Topology has an impact on the performance and the efficiency of all the algorithms.
“Single-speed” algorithms ABD and OHSAM are affected the most.

16

Empirical	Results

§Algorithms OHSAM and OHFAST perform much better in condensed topologies
-> need to exchangemessages between the servers during a relay phase.

§ OHFAST outperforms OHSAM -> Do not perform operation relays in every read operation.

16

Conclusions
We presented,

üAlgorithm CCHYBRID for the SWMR setting using one or two communication
rounds

üAlgorithm OHFAST for the SWMR setting using one or one-and-a-half
communication rounds

üSimulation results show that both algorithms outperform all slow operation
algorithms as well as “multi-speed” implementations that have high computation
demands.

Neither algorithm imposes constrains on the number of readers and/or the
writers.

Our developments take us closer to “practical” implementations of atomic
read/write objects in the message passing environment.

17

Thank you!

RELATED	WORK
ØAttiya, Bar Noy, and Dolev (96) provided the first algorithm – ABD –
that implements single-writer/multiple-reader (SWMR) atomic objects.
ØLynch and Shvartsman (97) presented extensions for MWMRmemory, where
both Read/Write operations take 4 communication exchanges.

ØDutta et al. (2004) give a SWMR implementation where each operation
involves 1 communication round.
ØThis is possible only when the number of readers r is bounded with respect
to the number of servers s and the server failures f, r < (s/f) - 2.

ØFernández et al. (2015) has shown that that although the result of
Dutta et. al (2004) is efficient in terms of communication, it requires
processes to evaluate a computationally hard predicate (NP-Hard).
ØThey proposed algorithm ccFast that allows operations to terminate with
linear computation overhead but under the same participation constraints
(Dutta 2004)

50

RELATED	WORK
ØGeorgiou et al. (2008) in order to achieve fast read operations, they
introduced “quorum views” to examine the distribution of the latest
value among the replicas.

ØGeorgiou et al. (2009) use the same predicate as Dutta et. al (2004)
but on virtual nodes (i.e. sets of readers).
ØBoth works trade communication for scalability.

ØHadjistasi et al. (2016) presented an algorithm, Oh-SAM, where each
read operation takes one and a half rounds to complete.
ØNo bounds assumed on the participation.
ØNegligible computation - algorithm relies on basic comparisons.
ØAlgorithm is optimal in terms of communication when no constraints are
imposed.

51

CONTRIBUTIONS
In this work we focus in improving the practicality of Single-Writer Multiple-Reader
(SWMR) atomic read/write register algorithms.
ØWe seek low communication and computation costs.

In particular,

ØIntroduce a “multi-speed” algorithm, CCHYBRID, that allows operations to
terminate in one or two communication rounds and does not impose any
constraints on the participation.

ØCombine techniques to obtain a “multi-speep” algorithm, OHFAST, that allows
one and one-and-a-half round operations with unbounded participation.

ØComplement the algorithms with experimental results.

52

