
Antonio	Fernández	Anta,	Nicolas	Nicolaou,	and	Alexandru	Popa

Implementing	a	fault-tolerant shared	object	in	an	asynchronous,	 	message-passing	
environment:	

• Availability	+	Survivability	=>	use	redundancy

• Asynchrony	+	Redundancy	=>	concurrent	operations

• Behavior	of	concurrent	operations	=>	consistency	semantics
− Safety,	Regularity,	Atomicity	[Lamport86]

N
ic

ol
as

 N
ic

ol
ao

u
2

1/
19

/1
6

Shared read/write object

• Clients: 1 writer & R readers (SWMR)
• Servers: S replica hostsComponents

• write(v): updates the object value to v
• read(): retrieves the object value
• Well-Formedness (only a single operation at a time)

Operations

• Asynchronous
• Message-Passing
• Reliable Channels (messages are not lost or altered)

Communication

• Crashes
• Any reader or the writer
• Up to minority of servers

Failures

N
ic

ol
as

 N
ic

ol
ao

u
3

1/
19

/1
6

• Provides	the	illusion that	operations	happen	in	a	sequential	 order
− a	read	returns	the	value	of	the	preceding	write
− a	read	returns	a	value	at	least	as	recent	as that	returned	by	any	preceding	
read

N
ic

ol
as

 N
ic

ol
ao

u
4

1/
19

/1
6

N
ic

ol
as

 N
ic

ol
ao

u
5

1/
19

/1
6

Operation
Latency

Communication
Delays

(round-trips)
Computation

Time

• [Attiya,	Bar-Noy,	Dolev	1996]	(Dijkstra	Prize	2011)

• Order	Operations	by	using	<ts,	v> pairs.

N
ic

ol
as

 N
ic

ol
ao

u
6

1/
19

/1
6

Writer	Protocol
• ts++ //increment ts
• Send <ts,v> to all
• Wait for a majority to

reply

Server	Protocol (Upon rcv a
msg m from i)
• if m.ts > ts

• Update local <ts,v>
• Send local <ts,v> to i

Reader	Protocol	 (2	phases)
• Phase 1:

• Send read to all
• Collect <ts,v> from a

majority
• Discover max(<ts,v>)

• Phase 2:
• Send max(<ts,v>) to all
• Collect ack from a

majority and return v

Reads must Write!
(2 round-trips)

• [Dutta et	al.	2004,	2010]	made	a	nice	observation

• Consider	f=1,	S=5	and	let	operation	to	communicate	with	S-f	servers	
instead	of	majority	

N
ic

ol
as

 N
ic

ol
ao

u
7

1/
19

/1
6

write(v) Servers

w

{w}

{w,}

{w}

{w}

{}

• [Dutta et	al.	2004,	2010]	made	a	nice	observation

• Consider	f=1,	S=5	and	let	operation	to	communicate	with	S-f	servers	
instead	of	majority	

N
ic

ol
as

 N
ic

ol
ao

u
8

1/
19

/1
6

write(v) Servers

read()

After	1	read
• At least S-2f servers
• Each	replies	to	both	{w,	r1}

w

r1

{w}

{w, r1}

{w, r1}

{w, r1}

{r1}

• [Dutta et	al.	2004,	2010]	made	a	nice	observation

• Consider	f=1,	S=5	and	let	operation	to	communicate	with	S-f	servers	
instead	of	majority	

N
ic

ol
as

 N
ic

ol
ao

u
9

1/
19

/1
6

write(v) Servers

read()

After	1	read
• At least S-2f servers
• Each	replies	to	both	{w,	r1}

w

r1

{w, r2}

{w, r1}

{w, r1, r2}

{w, r1, r2}

{r1, r2}

read()

r2

After	2	reads
• At least S-3f servers
• Each	replies	to	all	{w,	r1,	r2}

9↵ 2 [1, R+ 1] ^MS ✓ S s.t. (1)

8s 2 MS, s.ts = maxTS ^ |MS| � S � ↵f ^ |
\

s2MS

s.seen| � ↵ (2)

• Constructed	a	predicate	that	allowed	all	writes	and	
reads	to	complete	in	a	single	round-trip

N
ic

ol
as

 N
ic

ol
ao

u
10

1/
19

/1
6

Reader	Protocol	 (1	phase)
• Send read to all
• Collect <ts,v> and seen

sets from S-f
• Discover maxTS = max(ts)
• If predicate is true:

• return maxTS
• else

• return maxTS-1

Server	Protocol (Upon rcv a
msg m from i)
• if m.ts > ts

• Update local info
• Reset seen set to {i}

• else
• Add i in seen set

• Send ts and seen set to i

Writer	Protocol	 (1	phase)	
(Same as ABD)

• On	the	number	of	readers:

• On	the	number	of	writers
− Impossible	in	the	MWMR	model

• What	about	the	computation?N
ic

ol
as

 N
ic

ol
ao

u
11

1/
19

/1
6

R <
S

f
� 2

Problem	1	(Predicate	Formalization)

Input	

• Two	sets	

• Two	integers	

Output

• Is	there	a	set

N
ic

ol
as

 N
ic

ol
ao

u
12

1/
19

/1
6

U1 = {s1, . . . , sn}, U2 = {p1, . . . , pk} s.t. 8si 2 U1, si ✓ U2

↵, f s.t. n� ↵f � 1

M ✓ U1 s.t.

�����
\

s2M

s

����� � ↵ and |M | > n� ↵f

• U1 :	the	set	of	all	the	seen	sets	collected

• U2	 :	set	of	reader	and	the	writer	identifiers

• M	:	MS in	the	predicate

• α,	f	:	the	respective	α	and	f	in	the	predicate

N
ic

ol
as

 N
ic

ol
ao

u
13

1/
19

/1
6 9↵ 2 [1, R] ^MS ✓ S s.t. (1)

8s 2 MS, s.ts = maxTS ^ |MS| � S � ↵f ^ |
\

s2MS

s.seen| � ↵ (2)

Definition	MBP:
Input

• A	bipartite	graph
• A	positive	integer	

Output
• Are	there	two	sets	

N
ic

ol
as

 N
ic

ol
ao

u
14

1/
19

/1
6

G = (X,Y,E)

MBP is NP-complete [Peeters 01]

c

A ✓ X,B ✓ Y s.t. 8a 2 A, 8b 2 B, (a, b) 2 E and |E| = |A| ⇤ |B| � c

s1

s2

s3

p1

p2

p3

A = {s1,s3}, B={p1,p2}
c = 4

Input	Transformation
• Given	the	graph
− Set	

− Set

−

• Set	
• Problem	1	returns	true	if
− exists

−

• In	this	case and	MBP	is	true		

N
ic

ol
as

 N
ic

ol
ao

u
15

1/
19

/1
6 s1

s2

s3

p1

p2

p3

G = (X,Y,E)

c = ↵(n� ↵f)

U1 = X

U2 = Y

M ✓ U1 and |M | = n� ↵f

9P ✓ U2, |P | = ↵ s.t. 8s 2 M, 8p 2 P, (s, p) 2 E

c = |M | ⇤ |P | = ↵(n� ↵f)

(si, pj) 2 E () pj 2 si

U1 U2

Observation

To	avoid	the	excessive	computation	we	need	to	avoid	
the	set	manipulation.	

N
ic

ol
as

 N
ic

ol
ao

u
16

1/
19

/1
6

Question

Can	we	preserve	atomicity	if	we	know	how	many	and	
not	which	processes	read	the	latest	value?

N
ic

ol
as

 N
ic

ol
ao

u
17

1/
19

/1
6

Reader	Protocol	 (1	phase)
• Send read to all
• Collect <ts,v> and views

from S-f
• Discover maxTS = max(ts)
• If predicate is true:

• return maxTS
• else

• return maxTS-1

Server	Protocol (Upon rcv a
msg m from i)
• if m.ts > ts

• Update local info
• Set seen = {i}

• else
• Add i in seen set

• Send local ts and the size
of the seen set to i

Writer	Protocol	 (1	phase)	
(Same as ABD)

9↵ 2 [1, R+ 1] s.t. (1)

MS = {s : s.ts = maxTS ^ s.views � ↵} and |MS| � S � ↵f (2)

• Consider	 f=1,	S=5	and	let	operation	 to	communicate	
with	S-f	servers

N
ic

ol
as

 N
ic

ol
ao

u
18

1/
19

/1
6

write(v) Servers

w

{w}

{w}

{w}

{w}

{}

• Consider	 f=1,	S=5	and	let	operation	 to	communicate	
with	S-f	servers

N
ic

ol
as

 N
ic

ol
ao

u
19

1/
19

/1
6

write(v) Servers

read()

After	1	read
• At least S-2f servers
• Each	replies	to	2	processes

w

r1

{w}

{w, r1}

{w, r1}

{w, r1}

{r1}

• [Dutta et	al.	2004]	made	a	nice	observation

• Consider	f=1,	S=5	and	let	operation	to	communicate	with	S-f	servers	
instead	of	majority	

N
ic

ol
as

 N
ic

ol
ao

u
20

1/
19

/1
6

write(v) Servers

read()

After	1	read
• At least S-2f servers
• Each	replies	to	2	processes

w

r1

{r2}

{w, r1}

{w, r1, r2}

{w, r1, r2}

{r1, r2}

read()

r2

After	2	reads
• At least S-3f servers
• Each	replies	to	3	processes

• How	big	can	k	be?

• Since	k	is	the	number	of	processes	then

N
ic

ol
as

 N
ic

ol
ao

u
21

1/
19

/1
6 After	k-1	reads

• At least S-kf servers
• Each	replies	to	k	processes

S � kf > f) k <
S

f
� 1

R+ 1 <
S

f
� 1 => R <

S

f
� 2

Algorithm

•Given	b[1…R+1]
•For	each	s	that	replied
− if	s.ts	=	maxTS

• Increment	b[s.views]

•For	bucket	α in	R+1	to	2
− If	b[α]	>=	S-αf	return	true

− Else	‘’empty’’	 b[α]	in	b[α-1]
• b[α-1]	+=	b[α]

N
ic

ol
as

 N
ic

ol
ao

u
22

1/
19

/1
6

1 R R+1

Bucket R counts how many
servers replied with

s.views = R

Linear
Complexity: O(S)

• Server	Messages
− ABD:	[<ts,	v>]

− FAST:	[<ts,v>,	 set	seen]

− ccFAST:	[<ts,v>,	 int	views]

N
ic

ol
as

 N
ic

ol
ao

u
23

1/
19

/1
6

WR/RR:	write/read	round-trips
WC/RC:	write/read	computation	demands
WB/RB:	write/read	message	size	in	bits

• We	showed	that	FAST	is	not	computationally	
tractable

• Proposed	a	new	predicate	that
− Preserves	“fast”	behavior	from	the	operations

− Reduces the	messages	sizes	

− Can	be	computed	 in	linear	time

− Preserves	Atomicity

• Presented	an	algorithm	that	computes	the	proposed	
predicate	in	linear	timeN

ic
ol

as
 N

ic
ol

ao
u

24
1/

19
/1

6

Redefined	‘’fastness”	for	Atomic	Operations

N
ic

ol
as

 N
ic

ol
ao

u
25

1/
19

/1
6

• Consider	Previous	Example (f=1,	S=5)

N
ic

ol
as

 N
ic

ol
ao

u
26

1/
19

/1
6

Servers
{w, r2}

{w, r1}

{w, r1, r2}

{w, r1, r2}

{r1, r2}

s1

s2

s3

s4

s5

w

r1

r2

s1.seen

s3.seen

s4.seen

s5.seen

• M = {s3.seen, s4.seen} => |Μ| = S-3f = 2
• α = 3
• P = {w,r1,r2} => |P| = α
• c = α (S – αf) = 6

• Provides	the	illusion that	operations	happen	in	a	sequential	 order
− a	read	returns	the	value	of	the	preceding	write
− a	read	returns	a	value	at	least	as	recent	as that	returned	by	any	preceding	
read

N
ic

ol
as

 N
ic

ol
ao

u
27

1/
19

/1
6

Writer

Reader 1

Reader 2

Reader 3

write(v1) write(v2)

read(v2)

read(v1)

read(v2)

• [Attiya,	Bar-Noy,	Dolev	1996]	(Dijkstra	Prize	2011)

• Order	Operations	by	using	<ts,	v> pairs.

N
ic

ol
as

 N
ic

ol
ao

u
28

1/
19

/1
6

Writer	Protocol
• ts++ //increment ts
• Send <ts,v> to all
• Wait for a majority to

reply

write(v) Servers

Server	Protocol (Upon rcv a
msg m from i)
• if m.ts > ts

• Update local <ts,v>
• Send local <ts,v> to i

• [Attiya,	Bar-Noy,	Dolev	1996]	(Dijkstra	Prize	2011)

• Order	Operations	by	using	<ts,	v> pairs.

N
ic

ol
as

 N
ic

ol
ao

u
29

1/
19

/1
6

Writer	Protocol
• ts++ //increment ts
• Send <ts,v> to all
• Wait for a majority to

reply

write(v)

in transit

Servers

• [Attiya,	Bar-Noy,	Dolev	1996]	(Dijkstra	Prize	2011)

• Order	Operations	by	using	<ts,	v> pairs.

N
ic

ol
as

 N
ic

ol
ao

u
30

1/
19

/1
6

Writer	Protocol
• ts++ //increment ts
• Send <ts,v> to all
• Wait for a majority to

reply

write(v)

in transit

Servers

• [Attiya,	Bar-Noy,	Dolev	1996]	(Dijkstra	Prize	2011)

• Order	Operations	by	using	<ts,	v> pairs.

N
ic

ol
as

 N
ic

ol
ao

u
31

1/
19

/1
6

Reader	Protocol	 (2	phases)
• Phase 1:

• Send read to all
• Collect <ts,v> from a

majority
• Discover max(<ts,v>)

• Phase 2:
• Send max(<ts,v>) to all
• Collect ack from a

majority and return v

write(v) Servers

read() Reads must Write!

Safety

Regularity

AtomicityN
ic

ol
as

 N
ic

ol
ao

u
32

1/
19

/1
6

read(3)

write(8)

read(0)

Time

read(8)

read(8)

write(8)

read(8)

Time

read(8)

read(8)

write(8)

read(0)

Time

read(8)

• A process p performs a communication round during an
operation π	if:
− p sends a message m to a set of servers for π
− Any server that receives m replies to p
− Once p receives responses from a single quorum completes π	or

proceeds to a next communication round

• Fast Operation
− Completes at the end of its first round

• Fast Implementation
− All operations are fast

• Communication scheme
− Message delivery: Servers to Clients
− No server to server or client to client communicaiton

N
ic

ol
as

 N
ic

ol
ao

u
33

1/
19

/1
6

