r§| NAZARBAYEV
©J UNIVERSITY

Making “Fast” Atomic Operations
Computationally Tractable

iMmdea

_—
lt
njmnd
(72
==
N

Antonio Fernandez Anta, Nicolas Nicolaou, and Alexandru Popa

Lx
i

Science of Networks

Problem Statement

g v @ vy write vg Write
Writer Read
clients cader v read vy read
clients
¥ v

global time

Shared read/write object

o
)
A
O

Implementing a fault-tolerant shared object in an asynchronous, message-passing
environment:

e Availability + Survivability => use redundancy

~“Nicolas

e Asynchrony + Redundancy => concurrent operations

e Behavior of concurrent operations => consistency semantics

V. — Safety, Regularity, Atomicity [Lamport86]
iM(ea

networks

System Model: Definitions

e Clients: 1 writer & R readers (SWMR)
 Servers: S replica hosts

Components

» write(v): updates the object value to v

Ope rations « read(): retrieves the object value

» Well-Formedness (only a single operation at a time)

» Asynchronous

Communication BRSNS

 Reliable Channels (messages are not lost or altered)

3

pe

>
o)
LY
)
i
g
o
@
o
9
Z

e Crashes

Failu res « Any reader or the writer
« Up to minority of servers

iMdea

networks

Consistency Model: Atomicity/Lineanzability

* Provides the illusion that operations happen in a sequential order
— aread returnsthevalue of the preceding write

— aread returnsavalue at least as recent as thatreturned by any preceding
read

-2
©)]
©
@)

~Nicolas

-instituted

networks

Complexity Measure

Communication
Delays
(round-trips)

Computation
Time

Operation
Latency

3

o |
o
L
O
—.en"
g
(7 1
2.
©)
9
Z

iMdea

networks

Algorithm ABD: Recalling the past

* [Attiya, Bar-Noy, Dolev 1996] (Dijkstra Prize 2011)

* Order Operations by using <ts, v> pairs.

* Phase 1: ts++//increment ts
* Send read to all « Send <ts,v> to all
* Collect <ts,v> from a « Wait for a majority to
n@jorlty reply
 Discover max(<ts,v>)
* Phase 2:
ot Send max(<ts,v>) to all (Upon rcv a
S e Collect ack from a msg m from i)
,Hgi majority and return v * if m.ts > ts

« Update local <ts,v>
e Send local <ts,v> to 1

4% Reads must Write!
e (2 round-trips)

networks

Algorithm FAST: Reducing communication

e [Dutta et al. 2004, 2010] made a nice observation

* Consider f=1, S=5 and let operation to communicate with S-f servers
instead of majority

write(Vv) Servers

W}

o%s)
@)
fY
(@)

= instituted

networks

o%s)
@)
fY
(@)

~Nicolas

- II]StlhltEd

networks

Algorithm FAST: Reducing communication

e [Dutta et al. 2004, 2010] made a nice observation

* Consider f=1, S=5 and let operation to communicate with S-f servers

instead of majority

write(Vv) Servers
- {w)
W

{w,rl}

{w,rl}

{w,rl}

rl

. {rl}

read()

e At least S-2f servers
e Each replies to both {w, r1}

Algorithm FAST: Reducing communication

e [Dutta et al. 2004, 2010] made a nice observation

* Consider f=1, S=5 and let operation to communicate with S-f servers
instead of majority

Wﬂg) Servers (w12}
=
w e At least S-2f servers

e Each replies to both {w, r1}

e At least S-3f servers
* Each replies to all {w, r1, r2}

o%s)
o
fY
o)

rl 2
. {rl, 12} -
e e
read() read()

- |nst|tuted

networks

Algorithm FAST: Single round-trip operations

* Constructeda predicate that allowed all writes and
reads to completein a single round-trip

da e [I,R+1]AMSCS sit.

Vs € MS,s.ts =marTSAN|MS|>S—afN| ﬂ s.seen| > «

seEMS
(Upon rcv a
msg m from 1) e Send read to all
e if m.ts > ts e Collect <ts,v> and seen
= * Update local info sets from S-f
w e Reset seen set to {i} e Discover maxTS = max(ts)
pesagl |- else e If predicate 1is true:
% e Add i in seen set * return maxTS
V] e Send ts and seen set to i else
* return maxTS-1
1L[F] | (Same as ABD)
networks

Implications of FAST

* Onthe number of readers:

S
R< — -2

f

* On the number of writers

— Impossible in the MWMR model

 What about the computation?

networks

How hard is it to compute the predicate?

* Two sets
U1:{81,...,8n},U2:{pl,...,pk} s.t. Vs; € Up,s; C Us

* Twointegers o,f st. n—af>1

° |sthere a set

M Q U1 S.t.

() s

seM

>« and |M|>n—af

networks

networks

Problem equivalence to the predicate

dae [I,RIANMS CS s.t.

Vs € MS,s.ts =maxTSN|MS| >S5 —af A\ ﬂ s.seen| > «
seMS

* U, :the set of all the seen sets collected

* U, : set of reader and the writer identifiers

| M: MSin the predicate

* qa,f:therespectivea andf in the predicate

= |
)
A
O

~Nicolas

-instituted

networks

Maximum Biclique Problem (MBP)

sl pl

s2 p2
* A bipartite graph G = (X,Y,E) G

" . 3 p3
* A positive integer c S O

A ={s1,s3}, B={p1,p2}
c=4

e Are there two sets
ACX,BCY st. Vae A,Vbe B,(a,b) € E and |E| = |A|*|B|>c

MBP is NP-complete [Peeters 01]

networks

Problem 1 is NP-Hard - Reduction ldea

Giventhe graph G = (X,Y.E)
-Set U; = X

-Set U, =Y

— (s4,pj) € B < p; € s

Set ¢ = a(n — af)

Problem 1 returns true if

Ui

o
=

o~

— exists M C Uy and |M|=n— «af
— dP C Uy, |P|=as.t. Vse€ M,Vp € P,(s,p) € E

Inthiscase . _ 1. 1p| = amn—af) 3Nd MBPis true

Can we overcome NP-Hardness?

To avoid the excessive computation we need to avoid
the set manipulation.

Can we preserve atomicity if we know how many and
-, |not which processes read the latest value?

=
o)
Y
O

N
L TORE
L
Ry
5 X N
\ 154
< LoATA e

networks

networks

Algorithm ccFAST: A new predicate

da € [1, R+ 1] s.t.
MS ={s:sts=maxTS A s.views > a} and [MS| >S5S — af

(Upon rcv a

msg m from 1) e Send read to all
e if m.ts > ts e Collect <ts,v> and views

 Update local info from S-f

e Set seen = {i} Discover maxTS = max(ts)
« else e If predicate 1is true:

e Add i in seen set return maxTS
e Send local ts and the size else

of the seen set to i return maxTS-1

(Same as ABD)

-2
©)]
©
@)

~Nicolas

-instituted

networks

Algorithm ccFAST: Idea of the predicate

* Consider f=1, S=5 and let operation to communicate
with S-f servers

write(Vv) Servers
> A
W

‘

Algorithm ccFAST: |dea of the predicate

with S-f servers

* Consider f=1, S=5 and let operation to communicate

write(Vv) Servers

5@
\\%

{w,rl}

{w,rl}

{w,rl}

. {rl}

o%s)
@)
fY
(@)

- II]StlhltEd

networks

e At least S-2f servers
e Each replies to 2 processes

Algorithm ccFAST: |dea of the predicate

e [Dutta et al. 2004] made a nice observation

* Consider f=1, S=5 and let operation to communicate with S-f servers
instead of majority

write(Vv) Servers

- (12}

e At least S-2f servers
* Each replies to 2 processes

e At least S-3f servers
* Each replies to 3 processes

= insmuted

networks

Algorithm ccFAST: Idea of the predicate

e At least S-kf servers
e Each replies to k processes

* How big cank be?

S%kf>f¢k<?—1

|+ Since kis the number of processesthen

S S
R+l1<——-1=>R<~— —2
f f

networks

Computing the new predicate in linear

time
T %] [-ivenbis. e

*For each s that replied

— if s.ts = maxTS

Bucket R counts how many
servers replied with * Increment b[s.views]

s.views = R
= *For bucketa in R+1to 2
~'§ — If b[a] >= S-af return true
‘—g Linear — Else “empty” b[a] in b[a-1]
Z Complexity: O(S) .« blo-1] += bla]

- |||St[tuted

networks

Complexity Comparison

* Server Messages
— ABD: [<ts, v>]
— FAST: [<ts,v>, set seen]

— ccFAST: [<ts,v>, int views]

Algorithm || WR | RR | WC RC WB RB
ABD 1 2 | o) O(|S|) O(lg|V]) O(lg|V|)
FAST 1 1 | o) | O(s]?-2'¥) | o(g|V]) | o(S|+Ig|V])
cCFAST 1 1 O(1) O(|S)) O(lg|V]) | O(g|S| +1g|V|)

WR/RR: write/read round-trips
WC/RC: write/read computation demands
WB/RB: write/read message size in bits

networks

networks

Conclusions

We showed that FAST is not computationally
tractable

Proposed a new predicate that

— Preserves “fast” behavior from the operations

— Reduces the messages sizes

— Can be computed in linear time

— Preserves Atomicity

Presented an algorithm that computes the proposed
predicatein linear time

Redefined “fastness” for Atomic Operations

Thank you !

. s

P >y

P Vo

A A ¥ i
=

{ { !

networks

Reduction Example

* ConsiderPrevious Example (f=1, S=5)

Servers sl .seen

@)
sl
s3.seen
O ‘{W, rl} rl
s4 .seen
@™) ok

‘ {w,rl,12} s5 .seen
s4

« M={s3.seen,s4d.seen}=>|M| = S-3f=2

SSO{rl,rZ} . g=3
P={wr1,r2} =>|P|=qa
e c=a(S—af) =6

o%s)
@)
fY
(@)

~“Nicolas

= insmuted

networks

Consistency Model: Atomicity/Linearizability

* Provides the illusion that operations happen in a sequential order
— aread returnsthevalue of the preceding write

— aread returnsavalue atleast as recent as thatreturned by any preceding

read
write(vy) write(vy)

Writer _—_ o
§ read(vy)
[Reader 1 5

read(vs)
Reader 2 C
read(vy)
Reader 3 i

v

- msmuted

networks

Algorithm ABD: Recalling the past

* [Attiya, Bar-Noy, Dolev 1996] (Dijkstra Prize 2011)

* Order Operations by using <ts, v> pairs.

2
e
7

write(Vv) Se

e ts++//increment ts

e Send <ts,v> to all

* Wait for a majority to
reply

(Upon rcv a
msg m from 1)
e if m.ts > ts
« Update local <ts,v>
e Send local <ts,v> to 1

. s

P >y

P Vo

A A ¥ i
=

{ { !

O O00O0

networks

Algorithm ABD: Recalling the past

* [Attiya, Bar-Noy, Dolev 1996] (Dijkstra Prize 2011)

* Order Operations by using <ts, v> pairs.

write(Vv) Servers

= @

e ts++//increment ts

e Send <ts,v> to all

* Wait for a majority to
reply

In transit

networks

Algorithm ABD: Recalling the past

* [Attiya, Bar-Noy, Dolev 1996] (Dijkstra Prize 2011)

* Order Operations by using <ts, v> pairs.

write(Vv) Servers

e ts++ //increment ts

e Send <ts,v> to all

* Wait for a majority to
reply

.»,w».
,,c_U\
' IOI
15Y
Z

-instituted

networks

Algorithm ABD: Recalling the past

* [Attiya, Bar-Noy, Dolev 1996] (Dijkstra Prize 2011)

* Order Operations by using <ts, v> pairs.

write(Vv) Servers
-
il e Phase 1:
e Send read to all
e Collect <ts,v> from a
. majority
o Discover max(<ts,v>)
9 * Phase 2:
Tz Send max(<ts,v>) to all
T e Collect ack from a
: majority and return v
| cad0 Reads must Write!

= instituted

networks

Consistency Semantics |[Lamport36}

write(8))
Time

Safety . -

read(3) read(0))

write(8)

Regularity

read(8) read(0) /

" write(8) N

p— Time
Atomicity oL@ -
® ® ®
read(8) read(8) -

networks

Definition: Fastness

* A process p performs a communication round during an
operation Tt If:

— p sends a message m to a set of servers for 1t
— Any server that receives m replies to p

— Once p receives responses from a single quorum completes 1 or
proceeds to a next communication round

* Fast Operation
— Completes at the end of its first round

* Fast Implementation
— All operations are fast

e Communication scheme
— Message delivery:Serversto Clients
— No server to server or client to client communicaiton

networks

