3/9/15

|
~N

u
-~
t ; * X %

] * *
* * F
.“ * * g’ 0
* 4k SEVENTH FRAMEWORK <

PROGRAMME

MARIE CURIE

Emulating Highly Consistent Shared Storage on
top of Unreliable Message-Passing Nodes

iIMdea

minstitute

Nicolas Nicolaou

Science of Networks

Shared Storage Space

Shared Storage
Space

3/9/15

Distributed Storage Solution

Alice

ou @ IMDEA
oquium

Distributed Storage
Abstraction

Coll

* Data Replication — Servers/Disks
— Survivability and Availability

* Read/Write operations

» Consistency Semantics

Nicolas Nicolai

Operation Relations

* Precedence Relations for two operations 1, ,m,:
—m, precedes T, if the response of r; happens before the

invocation of m,
| T[Z | Time
I

— T, succeeds m, if the invocation of i, happens after the
response of 1,

| T[Z | Time
L~
— T, is concurrent with m, if t; neither precedes nor succeeds

T,
| T[; | Time
L]

<
L
o
=
©)
3
-3
250
3
z
4
0
42
V4

3/9/15

Consistency Semantics [Lamport86]
write(8) ‘ N
| | Time
Safety |] |
read(3) read(0) Y,
write(8) N
Time
Regularity | |] | |
read(8) read(0) Y,
write(8) N
‘é A . | P | Time
8 tomicity | o | | o | o
| 2 read(8) read(8))
Model

* Asynchronous, Message-Passing model
—Processes: writers W, readers R, servers S (replica hosts)

* Operations: read and write
¢ Shared Object: Read/Write Register
* Concurrency Environments:

~SWMR: [W|=1, [R[>1
~MWMR: [W[>1, |R[>1

Failures: Crashes

3/9/15

Complexity Measure

Communication

Delays Computation
(round-trips)

Operation
Latency

Collogtiium

Nicolas-Nicolast @ IMDEA

Understanding the Problem

Alice

“Alice hates Bob”

Collogtiium

Nicolas Nicdla‘oﬂu @ IMDEA

| Write(“Alice loves Bob”) I

Time
I Read(??) I

Not Fault Tolerant and cannot distinguish the latest value

3/9/15

A Simple Solution — One Server Failure

ou @ IMDEA
oquium

<“Alice hates Bob”, 4> Bob

Coll

| Write(“Alice loves Bob”,5) | Ti
ime

Nicolas Nicolai

I Read(“Alice loves Bob”, 5)

The problem of Multiple Readers

Mr. Cool

N
N
<
o
g >
©)
i <“Alice loves Bob’, 5> Bob
8
pad
(7]
D
8 | Write(“Alice loves Bob”,5) | .
= Time
I Read(“Alice loves Bob”, 5) | I Read(“Alice hates Bob”, 4) I

=
o8
D
o8O

3/9/15

[Attiya, Bar-Noy, Dolev ‘96]

Algorithm: ABD

Write Protocol: one phase

« P1: Increment your local timestamp, and send <ts, v> to a majority of
the replicas

Read Protocol: two phases

 P1: query phase
« Send read() to all the replicas
» When a majority replies discover the largest <maxts,v>
« P2: propagation phase
« Send write(<maxts,v>) to all replicas and wait for a majority to reply

Colloguium

Server Protocol: passive role

« Receive requests, update local timestamp (if msg.ts>server.ts) and reply
with <server.tag,v>

Nicolas Nicolaot @ IMDEA

=
o
@
Y

How it works in our example?

Mr. Cool

Alice .
\\\
AT
N
< \\
g .
g —————— >
® €
8 S
B ‘
8 S Bob
o)
OO0
Zz 0O
(7]
D
[) Write(“Alice loves Bob”,5!
% I () Time
Read(“Alice loves Bob”, 5) I I Read(“Alice loves Bob”, 5)

Folklore belief: “Reads must Write”

3/9/15

The Era of Fast Implementations....

« Single round (fast) writes and reads

+ Bounded readers: R<(S5/f)-2 where S servers
SWMR Fast & ffailures

[Dutta et al. 2004] e Impossible in MWMR model

« Single round writes
* Only a single complete 2-round (slow) read per write
TR I Unboundeq readers ’
(Georgon Niooou, © Bounded Virtual Nodes: V'<(S/)-2
 Impossible in the MWMR model

Colloguium

» General Quorum System
« Fast writes and Multiple slow reads per write
S‘Aé@gxi?k « Allows concurrent fast reads with writes

[Georgiou, Nicolaou, |« Unknown if applicable in MWMR model
Shvartsman 2008]

Nicolas Nicelaol @ IMDEA

F+
o
D
o

What happens in the MWMR?

Dasy

« o
ts=5 <‘Who loves Bob?”, 4> Bob

g
Q

e
b
(7))
o
[0}
ke

'z

=
D
o8O

3/9/15

P;Ssy <“Alice hates Bob”, 5> Bob

| Write(“Alice loves Bob”,5) | I Write(“Alice hates Bob”,5) |

| Read(???) |

Time

How to solve the problem?

* Writer needs to discover the latest timestamp in the
system before incrementing it

* Each writer includes its id with the timestamp

— Breaks the symmetry in case two writers read the same
maximum timestamp

0u @ IMDEA
oguium

— The <timestamp, id> pair is called TAG

—tagl > tag2 if either:

Coll

* tagl.timestamp > tag2.timestamp, or

Nicolas Nicola

* tagl.timestamp = tag2.timestamp AND tagl.id > tag2.id

=
o8
D
o8O

3/9/15

[Lynch, Shvartsman 1997]

Algorithm: MWABD

Belief: “Writes must Read”

Write Protocol: two phases

» P1: Query the majority for the largest tag

e P2: Increment the largest tag, and propagate <newtag, v> to
a majority

Read Protocol: two phases

e P1: Query the majority for the largest <maxtag, v>
» P2: Propagate (<maxtag, v>) to a majority

Colloguium

Server Protocol: passive role

» Receive requests, update local timestamp (if
msg.ts>server.ts) and reply with <server.tag,v>

Nicolas Nicolaot @ IMDEA

=
o
@
Y

Definition: Quorum systems
Servers

o)
B e
1@

—0

- 1 .

o

_

* Q, Qj, Q, are quorums
* Quorum System is the set {Q, Q, Q;}

— Property: every pair of quorums intersects

<
i
o
=
c -
,gv—-vs"
o T
‘o2
2o
z Y
a
©
o
p
z

- N-wise quorums systems: every N quorums intersect for N>|

* Every R/W operation communicates with a single quorum
* Faulty Quorum: Contains a faulty process

=
o8
D
o8O

3/9/15

[Englert, Georgiou, Musial, Nicolaou, Shvartsman 2009]

Are Fast Operations Possible in MWMR?

Theorem: No execution of safe register implementation
that use an N-wise quorum system, contains more than
N —1 consecutive, quorum switching, fast writes.

Theorem: It is impossible to obtain MWMR safe register
implementations that exploit an/V-wise quorum system, if

Colloguium

IWURI>N-1

Nicolas Nicelaol @ IMDEA

J

F+
o
D
o

New Technique - SSO

* SSO: Server Side Ordering

—Tag is incremented by the servers and not by the writer.
* Generated tags may be different across servers

* Clients decide operation ordering based on server responses

* SFW Algorithm

—Enables Fast Writes and Reads -- first such algorithm

<
w
o
P
®
O
iy
/0
AT
7
3
©
2
z

— Allows Unbounded Participation

10

Traditional Writer-Server Interaction

Pl:read()

reply(t;)

Find max (t;)
t,, = inc(t,)

server

P2: write(t,,v)

reply(max(t, 1)

Colloguium

Return(OK)

Nicolas Nicolaot @ IMDEA

=
o
@
Y

SFW Writer-Server Interaction

Pl:write(t,,v)

reply(t,v)

=inc(max(t,t,))

server

P2: write(t,,v)

reply(max(t,,t,))

£
S
=
o
o
°
0

<
i
o
P
©)
e
o
o
o
=
z
a
.S
o
4
z

=
o8
D
o8O

—

3/9/15

11

3/9/15

[Englert, Georgiou, Musial, Nicolaou, Shvartsman 2009]

Algorithm: SFW (in a glance)

Write Protocol: one or two rounds

* P1: Collect candidate tags from a quorum
« Exists tag t propagated in a bigger than (n/2-1)-wise intersection (PREDICATE PW)
* YES — assign t to the written value and return => FAST
* NO - propagate the unique largest tag to a quorum => SLOW

Read Protocol: one or two rounds

* P1: collect list of writes and their tags from a quorum
« Exists max write tag t in a bigger than (n/2-2)-wise intersection (PREDICATE PR)
* YES —return the value written by that write => FAST
* NO —is there a confirmed tag propagated to (n-1)-wise intersection => FAST
* NO - propagate the largest confirmed tag to a quorum => SLOW

Nicolas Nicolaot @ IMDEA
Collogtiilum

Server Protocol

 Increment tag when receive write request and send to read/write the latest writes

=
o
@
Y

Predicates: Read and Write

Writer predicate for a write w (PW): 3 7,Q', M S where: 7 € {{,,w) : (,w) €
M(w)s -inprogress A s € Q} MS={s:s€Q A T m(w)sy.inprogress}, and

QcQo<is|§—1) st (Ngeguggy @ S MS.

J

-

Reader predicate for a read p (PR): 3 7.Q7, MS, where: max(t) €

USGQ m(p)s,r.inprogress, MS = {s : s € Q A T € m(p)sr.inprogress}, and

5
=S
o
8
i
5

Q' CQ0<j<|5-2] st (Ngegingey @ S MS.

<
i
o
P
®
e
-0
o
O
=
z
a
.S
o
4
z

J

=
o8
D
o8O

12

3/9/15

The Weak Side of SFW

* Predicates are Computationally Hard
—NP-Complete

* Restriction on the Quorum System
—Deploys N-wise Quorum Systems

—QGuarantees fastness iff n>3

Nicolas Nitbfdi}?

The Good News...

 Algorithm CWFR
—Based on Quorum Views
* SWMR prediction tools
—Fast operations in General Quorum Systems
—Trades Speed of Write operations
* Two Round Writes

13

3/9/15

[Georgiou, Nicolaou, Shvartsman 2008]
Quorum Views

 ldea: Try to determine the status of the write operation based on
the distribution of the max timestamp in the replied quorum.

Q,
QZ
Qview(2): (Definitely)
< Write Incomplete Q
L
o
= _ 1| < Q,
@ g Q.l Q|
ge== | Quiew(1): (Potentially)
= Write Completed
(&)

Nicolas Nicola

Q

Qview(3):
Undeterminable

=
{13
@
o

What happens in MWMR?

» MWMR environment
» Concurrent writes
» Multiple concurrent values

» For values <tagl,vi>, , <tag3,v3>
P Let tagl < < tag3

Q,

<
w
o
P
®
T
o
‘o
L
z
8
©
2
z

14

3/9/15

Idea: Uncover the Past

* Discover the latest potentially completed write

* For values <tagl,v1>, , <tag3,v3>:
- <tag3,v3> not completed (servers possibly contained)
- (servers possibly contained <tagl,v1>)
- <tagl,v1> potentially completed

Q,

Colloguium

Nicolas Nicolaot @ IMDEA

000000

Q;

=
o
@
Y

[Georgiou, Nicolaou, Russell, Shvartsman 2012]

Algorithm: CWFR

Traditional Write Protocol: two rounds

« P1: Query a single quorum for the latest tag
* P2: Increment the max tag, send <newtag, v> quorum

Read Protocol: one or two rounds

« Iterate to discover smallest completed write

* P1: receive replies from a quorum Q
» QViewq(1) - Fast: return maxTag of current iteration
*» QViewq(2) - remove servers with maxTag and re-evaluate
» QViewy(3) - Slow: propagate and return maxTag,

Nicolas Nicolaol @ IMDEA
Collogtiium

Server Protocol: passive role

« Receive requests, update local timestamp and return <tag,v>

=
o8
D
o8O

15

3/9/15

Read Iteration: Discard Incomplete Tags

* For values <tagl,vl>, , <tag3,v3>:
- <tag3,v3> not completed: remove servers that contain <tag3,v3>
- : remove servers that contain
- <tagl,v1> potentially completed in Q;
* Qview(1) : all remaining servers contain <tagl,v1>

QZ QZ

5

o

=

¢ °
= o
Fo 2

2 8 1

z o

g ®

Q; Q O O Q;

ifidea Server Removal Past Prediction

Read Iteration: Discard Incomplete Tags

* For values <tagl,vl>, , <tag3,v3>:
- <tag3,v3> not completed: remove servers that contain <tag3,v3>
* Qview(3) : an intersection of the remaining servers contains

* P2: propagate <tag3,v3> to a complete quorum (help <tag3,v3> to complete)

QZ QZ

Nicolas Nicolaol @ IMDEA

]
o
®)
®

LO O

Past Prediction

16

3/9/15

Empirical Evaluation

* NS2: Single Processor Emulator
— Fully Controlled Environment

— Tested the efficiency of the algorithms under predefined
environmental parameters

* Planet-Lab: Planetary Scale Real Time Platform
— Real Time Network Environment (INTERNET)

e Machines Disseminated Throughout the Globe

— Tested practicality of the algorithms

ReadLatency

NS2: SIMPLE, APRX-SFW, CWFR

Read Latency vs # of Readers: RL.nw10.all.PROTO.rounds.maj15.f1.data.2D plot

28 T T T T ;
SIMPLE ——
APRX-SFW -
26 1
241
221
2L
181
e R s nnerri
st e oememmm e R L T
16 .
10 20 30 40 50 60 70 80
#Readers
% of Slow Reads vs # of Readers: RR.nw10.all PROTO.rounds.maj15.f1.data.2D plot
100 ;
SIMPLE ——
CWFR —-x-—-
9 APRX-SFW ---x--- |
80

14-wise Quorum System

Rounds

%2comm-reads.
g

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

10 20 30 40 50 60 70 80

17

3/9/15

Planetlab: SIMPLE, APRX-SFW, CWFR
* b)
Read Latency vs # of Readers: RL.nw10.planetlab.all.maj15.f1.res.2D plot
o7 " " " " SIMPLE
0.65 - 1
06 [B
Lol 1 Latency
i
g 05 | 4
S
04
"""""" Rt S Pl
035 L e ot 4
#Readers % of Slow Reads vs # of Readers: RR.nw10.planetiab.all.maj15.f1.res.2D plot
100 T t T t T
SIMPLE —+—
CWFR -—-x---
90 APRX-SFW ---%--- o
80 H
14-wise Quorum System ol |
£ 60 B
Rounds ¢ = 1
8§
£ 40 B
30 —
20 H
0F - - -
iMdea ol =
10 15 20 25 30 35 40
#Readers

18

3/9/15

Survivability of Data
Data Survivability is essential in today’ s systems and
applications
Popular approach: Redundancy
— Use of a Redundant Array of Inexpensive Disks (RAID)
- ARAID, ontains

o e g
. o

* Residing on a single physical

* Servers are connected to clients via a single network interface

Use Distributed Storage Systems instead

Centralized Solution??

LN e PP
~ P L
~ -
\\ //
® o
< . C—
L B R >
= €-—=-=-=-=-=-== >
o¢ =
5
i 000
58
BB
Zz 0O
E - 7 <
[o) — - .
O = - - ~o
VE ol \&%} “*D

19

3/9/15

A Simple Algorithm — ABD: Writer

timestamp++

* Write completes
Y

Update <timestamp,value>

A Simple Algorithm - ABD: Reader

se1: Discover maximum timestamp

Compute
v maxTs=max(<timestamp,value>)

20

A Simple Algorithm — ABD: Reader

e2: Propagate <maxTs,value>

Read completes with maxTs
and associated value

Update <timestamp,value>

Tagging the values

* TAG : <timestamp, wid> pair
—tagl > tag2 if either:
* tagl.timestamp > tag2.timestamp, or

* tagl.timestamp = tag2.timestamp AND tagl.wid > tag2.wid

* Why wid is necessary?

— Separate writes with the same timestamp

3/9/15

21

