BRIEF ANNOUNCEMENT:
Oh-RAM! ONE AND A HALF ROUND READ/WRITE ATOMIC MEMORY

Theophanis Hadjistasi †
Nicolas Nicolaou ‡
Alexander A. Schwarzmann †

ACM Symposium on Principles of Distributed Computing
Chicago IL, July 2016
Problem Statement: Emulating atomic read/write shared objects in an *asynchronous, messaging-passing* system where processors are *prone to crash*.

- To cope with processor failures, distributed object implementations use *redundancy* by replicating the object at multiple replica servers.
- Since read and write operations may access different object replicas, replication introduces the problem of *consistency*.

Atomicity [7] (or *linearizability* [6]) is the most intuitive consistency semantic as it provides the illusion of a single-copy object.
The seminal work of Attiya et al. [1] provided the first algorithm – ABD that implements single-writer/multiple-reader atomic objects. Each operation is guaranteed to terminate as long as some majority of replica servers do not crash.

Subsequently, Lynch et al. [8] showed how to implement MWMR atomic memory where read and write operations take 4 communication exchanges.

Dutta et al. [2] introduced a SWMR implementation where both read and writes involve 2 communication exchanges. This is possible only when the number of readers \(r \) is bounded with respect to the number of servers \(s \) and the server failures \(f \), \(r < (s/f) - 2 \).

The later work of Georgiou et al. [4] focused in relaxing the bound on the number of readers and the writers. Proposes hybrid approaches where some operations terminate in 2 and some in 4 communication exchanges.

Englert et al. [5] provide tight bounds on the number of exchanges that read and write operations require in the MWMR model.
SYSTEM MODEL & EFFICIENCY

System: Consists a collection of a failure prone, asynchronous processes with unique identifiers from a totally ordered set I. Set I consists 3 disjoint sets,

- Set W of writer identifiers
- Set R of reader identifiers
- Set S of replica servers identifiers (maintaining copy of the object)

Communication: achieved by exchanging messages via asynchronous point-to-point reliable channels.

Failure Model: Up to f servers may fail where, $f < |S|/2$

Efficiency:

- *Message complexity* - the worst case number of messages exchanged
- *Operation latency*,
 - *Communication time* accounts the computation steps in each operation
 - *Communication delay* - communication “exchanges” -> A collection of sends and receives for a specific message type within the protocol
ALGORITHM Oh-SAM (SWMR)

Write Protocol: Identical to the work of Attiya et. al. – algorithm ABD.

- Writer increments its local timestamp and broadcasts a write request message to all the servers.
- Writer terminates once it receives write acknowledgment messages from a majority of servers.

Server Protocol:

- When a server receives the write request message, it compares the *incoming* with its *local information* and updates accordingly. It then sends an acknowledgment message to the requesting writer.

Write Complexity: 2 Communication exchanges and $2|S|$ messages.
READ PROTOCOL (SWMR)

3 Communication Exchanges Oh-SAM

4 Communication Exchanges ABD
READ PROTOCOL (SWMR)

3 Communication Exchanges Oh-SAM

4 Communication Exchanges ABD

(i) Read Request

(i) Read Request
READ PROTOCOL (SWMR)

3 Communication Exchanges Oh-SAM

4 Communication Exchanges ABD

(i) Read Request
(ii) Servers Relay

(i) Read Request
(ii) Servers Reply
READ PROTOCOL (SWMR)

3 Communication Exchanges Oh-SAM

(i) Read Request
(ii) Servers Relay
(iii) Servers ACK

4 Communication Exchanges ABD

(i) Read Request
(ii) Servers Reply
(iii) Reader Writes
READ PROTOCOL (SWMR)

3 Communication Exchanges Oh-SAM

(i) Read Request
(ii) Servers Relay
(iii) Servers ACK

4 Communication Exchanges ABD

(i) Read Request
(ii) Servers Reply
(iii) Reader Writes
(iii) Servers ACK
THEOREM: Algorithm Oh-SAM implements an atomic SWMR read/write register.
IMPOSSIBILITY RESULT

We examine if it is possible to implement MWMR atomic read/write objects in an asynchronous, message-passing system with crash-prone processors where both read/write operations take three communication exchanges.

We consider the following three-phase scheme,

- The invoker p sends a message to a set of servers
- Each server that receives the message from p sends a certain relay message to a set of servers
- Once a server receives enough relay messages it replies to p
IMPOSSIBILITY RESULT

Why this three-phase scheme is reasonable,

1) The invoker p sends a message to a set of servers
 Servers cannot know about a write operation unless writer contacts them

2) Each server that receives the message from p sends a certain relay message to a set of servers
 Must be the transitional phase for the servers to move from phase (1) to (3)
 Must facilitate the dissemination of the information regarding any write operation to the rest of the servers.

3) Once a server receives enough relay messages it replies to p
 It must be the servers who inform the writer about the status/completion of the write operation. Otherwise, a writer will wait indefinitely

THEOREM: It is not possible to obtain an atomic read/write register implementation, where all operations perform 3 communication exchanges, when $|W| = |R| = 2$, $|S| \geq 3$ and $f = 1$
Motivated by the impossibility result, we sought a solution that involves 3 or 4 communication exchanges per operation.

Compared to the SWMR setting, we need to impose an ordering on the values that are concurrently written by multiple writers.

- We associate each value with a tag consisting of a pair of a timestamp ts and the id of the writer - tag = $<ts, id>$
- We use lexicographic comparison to order tags (cf. [8])
Algorithm Oh-MAM (MWMR)

Write Protocol: Identical to algorithm ABD for MWMR.

Read Protocol: Identical to the 3 communication exchanges protocol we discussed earlier for algorithm Oh-SAM (SWMR)

Complexities:

- **Write Oh-MAM & ABD:** 4 Communication exchanges and \(4|S|\) messages.
- **Read Oh-MAM:** 3 Communication exchanges and \(|S^2| + 2|S|\) messages.
- **Read ABD:** 4 Communication exchanges and \(4|S|\) messages.

Theorem: Algorithm Oh-MAM implements an atomic SWMR read/write register.
CONCLUSIONS

We focused on the problem of emulating atomic read/write shared objects in a message-passing setting using three communication exchanges – equivalent of one-and-a-half traditional rounds.

We presented,

- An algorithm for the SWMR setting Oh-SAM
- The Impossibility to implement an algorithm for the MWMR setting where the operations take 3 communication exchanges
- An algorithm for the MWMR setting Oh-MAM

We note that the algorithms do not impose any constrains on the number of readers (SWMR & MWMR) or the writers (MWMR)

Both algorithms are optimal in terms of communication exchanges when no bounds are imposed on participation.
Thank you!
REFERENCES

